
Semidefinite Programming1

• In this lecture, we introduce another “big hammer” in the algorithmic toolbox which has had many
successes in the design and analysis of approximation algorithm. This tool is semidefinite program-
ming which is a generalization of linear programming. The main characters in this story are n × n
symmetric matrices A ∈ Rn×n which have non-negative eigenvalues. Such matrices are called posi-
tive semidefinite, or simply PSD matrices, and are denotes as A < 0.

• A Linear Algebra Refresher. Before moving further, it is a good time to refresh the reader’s mem-
ory of a few facts about eigenvalues and vectors. Fix a square matrix A ∈ Rn×n. A non-zero
n-dimensional vector v is an eigenvector of A with eigenvalue λ if Av = λv. Geometrically, if one
thinks of A as a linear transform then the eigenvectors are precisely the ones which get scaled and/or
flipped by the action of A.

Fact 1 (Eigenvalues and Eigenvectors). Let A ∈ Rn×n be a symmetric matrix. Then,

a. All its eigenvalues are real, and therefore can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λn.

b. There exists an orthonormal basis of eigenvectors. More precisely, there exists eigenvectors
{u1,u2, . . . ,un} such that (a) Aui = λiui, (b) ‖ui‖2 = 1, (c) u>i uj = 0 for i 6= j, and (d)
ui’s span Rn. Such a basis is called an eigenbasis of A. Furthermore, A =

∑n
i=1 λiuiu

>
i .

c. The eigenvectors λi’s and orthonormal eigenbasis ui’s can be found in polynomial timea.
aWe are lying a bit here since the eigenvalues can be irrational. A more precise statement would be that they can

be approximated to high precision in polynomial time.

An n×n symmetric matrix A is called positive semidefinite if all its eigenvalues are non-negative. In
symbols, A < 0 if λi(A) ≥ 0 for 1 ≤ i ≤ n. There are many equivalent definitions of PSD matrices,
and instead of describing them all at once, we introduce them as and when needed. The first one is
the following: A is PSD if and only if the dot-product of any vector v and its transform Av is always
non-negative, that is, the angle between them is not obtuse.

Fact 2. A n× n symmetric matrix is PSD if and only if v>Av ≥ 0 for all v ∈ Rn.

Proof. Suppose A < 0, that is, λi(A) ≥ 0 for all 1 ≤ i ≤ n. Let {ui}i=1,...,n be the orthonormal
eigenbasis of A. Fix any vector v ∈ Rn. Write v =

∑n
i=1 αiui for some reals αi ∈ R, that is, in the

span of the orthonormal basis. Now observe that v>Av =
∑n

i=1 λiα
2
i ≥ 0, since all eigenvalues are

non-negative. On the other hand, if A 6< 0, then if λn < 0 and un is the corresponding eigenvector,
then u>nAun = λn < 0.

The above characterization is very useful. In fact, it allows us to establish an extremely important fact
one which leads to the tractability of semidefinite programming (which we have not defined yet).

1Lecture notes by Deeparnab Chakrabarty. Last modified : 15th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



Fact 3. Consider the set Sn
+ := {A ∈ Rn×n : A < 0}. This set is a convex set.

Proof. Let A and B two members of Sn
+ and consider M := θA+ (1− θ)B for some θ ∈ [0, 1]. We

claim thatM < 0 as well. To show this, fix v ∈ Rn, and due to Fact 2 it suffices to show v>Mv ≥ 0.
However, the LHS is simply θv>Av+ (1− θ)v>Bv, which is ≥ 0 again due to Fact 2 since both A
and B are PSD.

• Examples of PSD matrices. Let’s mention some examples of PSD matrices. The reader can choose
to skip these in the first reading.

a. Diagonal matrices D ≥ 0 with non-negative entries. Indeed, the eigenvectors of such a ma-
trix are the unit vectors ei which has a 1 in the ith coordinate and 0 everywhere else, and the
corresponding Dii entry is the eigen value.

b. Outer-Product of vector and matrices. Let z ∈ Rn be any vector. The outer product of z with
itself is the n × n symmetric matrix zz>, whose ijth entry is zizj . This matrix is PSD. To see
this, for any vector v ∈ Rn, note v>

(
zz>

)
v =

(
v>z

)2 ≥ 0. PSDness follows from Fact 2.
For a more general example, letB be an n×mmatrix. Then the matrixBB> is PSD for exactly
the same reason as above.

c. Moment matrix and Covariance Matrix. Let X1, . . . , Xn be n random variables generated by
some distributionD. These random variables may not be independent. The n×n second moment
matrix induced by these n random variables is

M :=


Exp[X2

1 ] Exp[X1X2] · · · Exp[X1Xn]
Exp[X2X1] Exp[X2

2 ] · · · Exp[X2Xn]
...

...
. . .

...
Exp[XnX1] Exp[XnX2] · · · Exp[X2

n]


This matrix M < 0. The reason is similar to the previous bullet point: for any v ∈ Rn one no-
tices using linearity of expectation that v>Mv = Exp[v>

(
xx>

)
v] where x := (X1, . . . , Xn)

>

is the (random) vector with these random variables stacked one over the other. And thus v>Mv
is the expectation of a non-negative random variable.

d. Laplacian of a Graph. Another important example which we may not use in this course but is,
I think, important to know is a matrix associated with a graph. Given an undirected simple (no
loops or parallel edges) graph G = (V,E) on n vertices and m edges, the Laplacian LG is an
n× n symmetric matrix defined as

LG(u, v) =


deg(v) if u = v

−1 if (u, v) ∈ E
0 otherwise

This matrix LG < 0. To see this, observe that LG can be written as a sum of m matrices
{LG,e}e∈E , one for each edge e = (u, v) where LG,e(u, u) = LG,e(v, v) = 1 and LG,e(u, v) =
LG,e(v, u) = −1. The matrix LG,e < 0; indeed, for any x ∈ Rn the quadratic form x>LG,ex =
(xu − xv)

2. And the proof of Fact 3 shows that the sum of PSD matrices is PSD.

2



• Semidefinite Programs. We can now state what a semidefinite program (SDP) is. It is a mathematical
program where the set of variables are arranged in the form of an n × n symmetric matrix X. More
precisely, there are

(
n
2

)
variables Xij = Xji corresponding to the entries of the matrix X. The

objective is a linear function c(X) of the above variables. There are two kinds of constraints. One is
a linear constraints on these variables. The second, and the more most crucial constraint, is the PSD
constraint: it constraints that X < 0. Since the set of PSD matrices is a convex set, the program below
is a convex program.

sdp := max c(X) (A General SDP)

ai(X) ≤ bi, 1 ≤ i ≤ m (1)

X < 0, (2)

Oftentimes, one writes the linear functions c(X) and the ai(X)’s as a “matrix dot product”. Note that
any linear function c(X) is simply

∑n
i=1

∑n
j=1 cijXij . If one considers the cij’s as an n × n matrix

C with Cij = cij , then this summation is often written as C ·X, but we avoid this notation.

At this point, a reader perhaps wonders why would having a PSD constraint (a) make sense, and (b)
be helpful. We will address both these questions with an example soon. However, the main theorem
which one needs to know is that SDPs are “solvable”, and for this course we just assume they can be
solved exactly.

Theorem 1. For (A General SDP) there exists a polynomial time algorithm which can return an
(1+ ε)-approximate solution in time at most a polynomial in n and log(1/ε). This works even if
the access to the linear constraints, (1), is via a separation oracle.

We won’t say much about the proof of this except that a variation of the ellipsoid algorithm solves
this. As mentioned above, in these lecture notes we will assume they can be solved exactly.

• Why SDPs? The Maximum Cut Problem. Recall the maximum cut problem. We are given an
undirected graph G = (V,E) and every edge e has a non-negative weight w(e). The objective is to
find a subset S ⊆ V such that w(∂S) =

∑
e∈∂S w(e) is maximized. We saw a 1

2 -approximation via
local search. We now see how to write an SDP relaxation for the maximum cut problem.

Before we write an SDP relaxation, let us first write an exact “quadratic” program for the maximum
cut problem. Indeed, here it is. We think of assigning each vertex i ∈ V a variable xi ∈ {−1,+1}
with −1 being in S and +1 not being in S (we could have used 0, 1 but −1, 1 makes life easier). We
ensure that xi can indeed take only these values by asserting x2

i = 1, the quadratic constraint. Thus,
we get

opt := max
1

2
·
∑

(i,j)∈E

w(i, j) · (1− xi · xj) (Max Cut QP)

x2
i = 1, ∀i ∈ V (3)

Now consider rewriting the above as a matrix where Xuv is supposed to capture xuxv. This “lifting”
the product of two variables to

(
n
2

)
variables makes both the objective and (6), linear constraints in

the entries of X. Of course, we have only transferred the hardness to the constraint that the matrix X

3



must look like Xuv = xuxv for all u, v. Or in other words, if we think x as an n-dimensional vector,
X = xx>.

opt := max
1

2
·
∑

(u,v)∈E

w(u, v) · (1−Xuv) (Max Cut QP, restated)

Xvv = 1, ∀v ∈ V (4)

X is an outer product xx> for some vector x (5)

It is the constraint (5) that we relax to a PSD constraint; it is a valid relaxation since outer products
are PSD matrices. And so, the SDP relaxation for the maximum cut problem is the following.

opt ≤ sdp := max
1

2
·
∑

(u,v)∈E

w(u, v) · (1−Xuv) (Max Cut SDP)

Xvv = 1, ∀v ∈ V (6)

X < 0, (7)

• How to use an SDP Solution? Given an instance of the maximum cut problem, namely an undirected
graph with non-negative weights on edges, using semidefinite programming we can obtain an n × n
PSD matrix X whose diagonal entries are 1 and sdp = 1

2

∑
(u,v)∈E w(u, v)(1 − Xuv) is an upper

bound on opt. How does it help us in obtaining a cut of comparable value? How does one “round”
this, at first glance bizarre object, into a subset of vertices? Time to state another fact about PSD
matrices.

Fact 4 (Vector Dot-Product Representation). Let A < 0 be an n × n matrix. Then one can
efficiently find an r× n real matrix V such that A = V >V , where r = rank(A). That is, for any
1 ≤ i, j ≤ n, Aij = v>i vj where vi’s are the r-dimensional columns of V .

Proof. By the spectral decomposition fact in Fact 1,A =
∑n

i=1 λiuiu
>
i . IfA is PSD, then λi ≥ 0, and

therefore
√
λi is a real number. Furthermore, the number of non-zero summands above is precisely

r = rank(A). Therefore, A = QQ> where Q =
∑r

i=1

√
λiui is an n × r matrix. The matrix V

asserted in the fact is Q>.

Coming back to the matrix X from the SDP solution. Fact 4 gives us n vectors v1, . . . ,vn which
live in Rr such that Xij = v>i vj . Note that if r = 1, then each vi ∈ {−1,+1} and that would
indeed point us towards the cut: S = {i : vi = +1} say. Instead, for each vertex i ∈ V we get a
“high-dimensional” vector vi with ‖vi‖2 = 1 since Xii = 1. The objective of the SDP is

opt ≤ sdp =
1

2

∑
(i,j)∈E

w(i, j) ·
(
1− v>i vj

)
It would be instructive for the reader to compare the RHS with (Max Cut QP).

The art of SDP rounding is to somehow take these high-dimensional vectors and “round” them down
to scalars, such as −1 or +1 so that the “loss” in doing so can be bounded. In the next lecture, we see
how to do this for the max-cut problem.

4



Notes

Semidefinite Programming is perhaps the most sophisticated tool in the algorithm designer’s arsenal. Note
that it generalizes linear programming. To see this, note that non-negativity constraints can be cast as a
PSD constraint when the variables are on the diagonals. In practice, SDP solvers are still slower than LP
solvers, but there is active research in this area. There are many beautiful surveys written on this subject. We
point to this one [3] by Lovász for a perspective on applications to CS and math, and to this slightly older
one [5] from an optimization perspective. The first and most famous application of SDPs to approximation
algorithms is the paper [1] by Goemans and Williamson. More recently, a much deeper connection between
SDPs, approximability, and the so-called Unique Games Conjecture have been uncovered in the papers [2, 4]
by Khot, Kindler, Mossel, and O’Donnell, and Raghavendra, respectively.

References

[1] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum Cut and
Satisfiability Problems Using Semidefinite Programming. Journal of the ACM, pages 1115–1145, 1995.

[2] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for max-cut and
other 2-variable csps? SIAM Journal on Computing (SICOMP), 37(1):319–357, 2007.

[3] L. Lovász. Semidefinite programs and combinatorial optimization. In Recent advances in algorithms
and combinatorics, pages 137–194. Springer, 2003.

[4] P. Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proc., ACM
Symposium on Theory of Computing (STOC), pages 245–254, 2008.

[5] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38(1):49–95, 1996.

5


